Как рассчитать нагрев нихрома?
Электрическое сопротивление — это одна из самых важных характеристик нихрома.
Оно определяется многими факторами, в частности электрическое сопротивление нихрома зависит от размеров проволоки или ленты, марки сплава.
Общая формула для активного сопротивления имеет вид:
R = ρ · l / S
R — активное электрическое сопротивление (Ом), ρ- удельное электрическое сопротивление (Ом·мм), l- длина проводника (м), S — площадь сечения (мм2)
Значения электрического сопротивления для 1 м нихромовой проволоки Х20Н80
1 | Ø 0,1 | 137,00 |
2 | Ø 0,2 | 34,60 |
3 | Ø 0,3 | 15,71 |
4 | Ø 0,4 | 8,75 |
5 | Ø 0,5 | 5,60 |
6 | Ø 0,6 | 3,93 |
7 | Ø 0,7 | 2,89 |
8 | Ø 0,8 | 2,2 |
9 | Ø 0,9 | 1,70 |
10 | Ø 1,0 | 1,40 |
11 | Ø 1,2 | 0,97 |
12 | Ø 1,5 | 0,62 |
13 | Ø 2,0 | 0,35 |
14 | Ø 2,2 | 0,31 |
15 | Ø 2,5 | 0,22 |
16 | Ø 3,0 | 0,16 |
17 | Ø 3,5 | 0,11 |
18 | Ø 4,0 | 0,087 |
19 | Ø 4,5 | 0,069 |
20 | Ø 5,0 | 0,056 |
21 | Ø 5,5 | 0,046 |
22 | Ø 6,0 | 0,039 |
23 | Ø 6,5 | 0,0333 |
24 | Ø 7,0 | 0,029 |
25 | Ø 7,5 | 0,025 |
26 | Ø 8,0 | 0,022 |
27 | Ø 8,5 | 0,019 |
28 | Ø 9,0 | 0,017 |
29 | Ø 10,0 | 0,014 |
Значения электрического сопротивления для 1 м нихромовой ленты Х20Н80
1 | 0,1×20 | 2 | 0,55 |
2 | 0,2×60 | 12 | 0,092 |
3 | 0,3×2 | 0,6 | 1,833 |
4 | 0,3×250 | 75 | 0,015 |
5 | 0,3×400 | 120 | 0,009 |
6 | 0,5×6 | 3 | 0,367 |
7 | 0,5×8 | 4 | 0,275 |
8 | 1,0×6 | 6 | 0,183 |
9 | 1,0×10 | 10 | 0,11 |
10 | 1,5×10 | 15 | 0,073 |
11 | 1,0×15 | 15 | 0,073 |
12 | 1,5×15 | 22,5 | 0,049 |
13 | 1,0×20 | 20 | 0,055 |
14 | 1,2×20 | 24 | 0,046 |
15 | 2,0×20 | 40 | 0,028 |
16 | 2,0×25 | 50 | 0,022 |
17 | 2,0×40 | 80 | 0,014 |
18 | 2,5×20 | 50 | 0,022 |
19 | 3,0×20 | 60 | 0,018 |
20 | 3,0×30 | 90 | 0,012 |
21 | 3,0×40 | 120 | 0,009 |
22 | 3,2×40 | 128 | 0,009 |
Расчет нихромовой спирали
При намотке спирали из нихрома для нагревательных приборов эту операцию зачастую выполняют «на глазок», а затем, включая спираль в сеть, по нагреву нихромового провода подбирают требующееся количество витков. Обычно такая процедура занимает много времени, да и нихром расходуется попусту.
Чтобы рационализировать эту работу при использовании нихромовой спирали на напряжение 220 В, предлагаю воспользоваться данными приведенными в таблице, из расчета, что удельное сопротивление нихрома = (Ом · мм2 / м) C.
С ее помощью можно быстро определить длину намотки виток к витку в зависимости от толщины нихромового провода и диаметра стержня, на который наматывается нихромовая спираль.
Пересчитать длину спирали из нихрома на другое напряжение нетрудно, использовав простую математическую пропорцию.
Длина нихромовой спирали в зависимости от диаметра нихрома и диаметра стержня
1,5 | 49 | 1,5 | 59 | 1,5 | 77 | 2 | 64 | 2 | 76 | 2 | 84 | 3 | 68 | 3 | 78 |
2 | 30 | 2 | 43 | 2 | 68 | 3 | 46 | 3 | 53 | 3 | 64 | 4 | 54 | 4 | 72 |
3 | 21 | 3 | 30 | 3 | 40 | 4 | 36 | 4 | 40 | 4 | 49 | 5 | 46 | 6 | 68 |
4 | 16 | 4 | 22 | 4 | 28 | 5 | 30 | 5 | 33 | 5 | 40 | 6 | 40 | 8 | 52 |
5 | 13 | 5 | 18 | 5 | 24 | 6 | 26 | 6 | 30 | 6 | 34 | 8 | 31 | ||
6 | 20 | 8 | 22 | 8 | 26 | 10 | 24 |
Например, требуется определить длину нихромовой спирали на напряжение 380 В из провода толщиной 0,3 мм, стержень для намотки Ø 4 мм. Из таблицы видно, что длина такой спирали на напряжение 220 В будет равна 22 см. Составим простое соотношение:
220 В — 22 см
380 В — Х см
тогда:
X = 380 · 22 / 220 = 38 см
Намотав нихромовую спираль, подключите ее, не обрезая, к источнику напряжения и убедитесь в правильности намотки. У закрытых спиралей длину намотки увеличивают на 1/3 значения, приведенного в таблице.
Расчет массы нихрома Х20Н80 (проволока и лента)
В данной таблице приведена теоретическая масса 1 метра нихромовой проволоки и ленты. Она изменяется в зависимости от размеров продукции.
Ø 0,4 | 8,4 | 0,126 | 0,001 |
Ø 0,5 | 8,4 | 0,196 | 0,002 |
Ø 0,6 | 8,4 | 0,283 | 0,002 |
Ø 0,7 | 8,4 | 0,385 | 0,003 |
Ø 0,8 | 8,4 | 0,503 | 0,004 |
Ø 0,9 | 8,4 | 0,636 | 0,005 |
Ø 1,0 | 8,4 | 0,785 | 0,007 |
Ø 1,2 | 8,4 | 1,13 | 0,009 |
Ø 1,4 | 8,4 | 1,54 | 0,013 |
Ø 1,5 | 8,4 | 1,77 | 0,015 |
Ø 1,6 | 8,4 | 2,01 | 0,017 |
Ø 1,8 | 8,4 | 2,54 | 0,021 |
Ø 2,0 | 8,4 | 3,14 | 0,026 |
Ø 2,2 | 8,4 | 3,8 | 0,032 |
Ø 2,5 | 8,4 | 4,91 | 0,041 |
Ø 2,6 | 8,4 | 5,31 | 0,045 |
Ø 3,0 | 8,4 | 7,07 | 0,059 |
Ø 3,2 | 8,4 | 8,04 | 0,068 |
Ø 3,5 | 8,4 | 9,62 | 0,081 |
Ø 3,6 | 8,4 | 10,2 | 0,086 |
Ø 4,0 | 8,4 | 12,6 | 0,106 |
Ø 4,5 | 8,4 | 15,9 | 0,134 |
Ø 5,0 | 8,4 | 19,6 | 0,165 |
Ø 5,5 | 8,4 | 23,74 | 0,199 |
Ø 5,6 | 8,4 | 24,6 | 0,207 |
Ø 6,0 | 8,4 | 28,26 | 0,237 |
Ø 6,3 | 8,4 | 31,2 | 0,262 |
Ø 7,0 | 8,4 | 38,5 | 0,323 |
Ø 8,0 | 8,4 | 50,24 | 0,422 |
Ø 9,0 | 8,4 | 63,59 | 0,534 |
Ø 10,0 | 8,4 | 78,5 | 0,659 |
1 x 6 | 8,4 | 6 | 0,050 |
1 x 10 | 8,4 | 10 | 0,084 |
0,5 x 10 | 8,4 | 5 | 0,042 |
1 x 15 | 8,4 | 15 | 0,126 |
1,2 x 20 | 8,4 | 24 | 0,202 |
1,5 x 15 | 8,4 | 22,5 | 0,189 |
1,5 x 25 | 8,4 | 37,5 | 0,315 |
2 x 15 | 8,4 | 30 | 0,252 |
2 x 20 | 8,4 | 40 | 0,336 |
2 x 25 | 8,4 | 50 | 0,420 |
2 x 32 | 8,4 | 64 | 0,538 |
2 x 35 | 8,4 | 70 | 0,588 |
2 x 40 | 8,4 | 80 | 0,672 |
2,1 x 36 | 8,4 | 75,6 | 0,635 |
2,2 x 25 | 8,4 | 55 | 0,462 |
2,2 x 30 | 8,4 | 66 | 0,554 |
2,5 x 40 | 8,4 | 100 | 0,840 |
3 x 25 | 8,4 | 75 | 0,630 |
3 x 30 | 8,4 | 90 | 0,756 |
1,8 x 25 | 8,4 | 45 | 0,376 |
3,2 x 32 | 8,4 | 102,4 | 0,860 |
Расчет массы вольфрамовой проволоки
8 | 0,008 | 0,19 | 0,0010 | 0,97 | 1031,32 |
9 | 0,009 | 0,25 | 0,0012 | 1,23 | 814,87 |
10 | 0,01 | 0,30 | 0,0015 | 1,52 | 660,04 |
11 | 0,011 | 0,37 | 0,0018 | 1,83 | 545,49 |
12 | 0,012 | 0,44 | 0,0022 | 2,18 | 458,36 |
13 | 0,013 | 0,51 | 0,0026 | 2,56 | 390,56 |
14 | 0,014 | 0,59 | 0,0030 | 2,97 | 336,76 |
15 | 0,015 | 0,68 | 0,0034 | 3,41 | 293,35 |
16 | 0,016 | 0,78 | 0,0039 | 3,88 | 257,83 |
17 | 0,017 | 0,88 | 0,0044 | 4,38 | 228,39 |
18 | 0,018 | 0,98 | 0,0049 | 4,91 | 203,72 |
19 | 0,019 | 1,09 | 0,0055 | 5,47 | 182,84 |
20 | 0,02 | 1,21 | 0,0061 | 6,06 | 165,01 |
30 | 0,03 | 2,73 | 0,0136 | 13,64 | 73,34 |
40 | 0,04 | 4,85 | 0,0242 | 24,24 | 41,25 |
50 | 0,05 | 7,58 | 0,0379 | 37,88 | 26,40 |
60 | 0,06 | 10,91 | 0,0545 | 54,54 | 18,33 |
Нагреватели для муфельных печей: требования к материалам изготовления
Если Вы сомневаетесь, фехраль или нихром, что лучше подойдет в качестве основы для нагревателя муфельной печи, рассмотрите их характеристики. Каждый из них имеет разные показатели:
- Электрического сопротивления. Чем оно выше, тем лучше. Сплавы с высоким показателем электросопротивления быстрее нагреваются. Использовать их можно в меньших объемах, чем остальное сырье. Это очень удобно. В таком случае появляется возможность установить нагреватель из нихромовой проволоки внутри конструкции. Большого пространства для этого не потребуется.
- Постоянности физических свойств. Очень трудно работать с динамичными элементами, такими как неметаллы. Приходится прибегать к применению дополнительных трансформаторов. Это может усложнить процесс эксплуатации промышленного сушильного шкафа или муфельной печи.
- Температурного коэффициента. Когда меняется уровень температур, становится другим и электрическое сопротивление элемента. Нагреватель из нихрома изменяет свои показатели минимально.
- Жаропрочности. Предельный уровень отличается у разных материалов. Изучив технические характеристики, Вы увидите, насколько устойчив нихром или фехраль к высоким температурам.
Промышленный сушильный шкаф должен иметь очень качественную конструкцию, в том числе, обладать надежным нагревательным элементом
Как рассчитать наименьшее сечение нагревательного элемента электропечи
Расчет электрических печей должен обязательно проводиться с учетом особенностей самого нагревательного элемента. Ведь если через него пройдет сила тока, больше чем он может вынести – выход из строя неизбежен. Планируя конструкцию муфельной или шахтной электропечи, обязательно учитывайте будущий диаметр нагревателя.
Рассчитывать его можно, зная силу тока и предполагаемую рабочую температуру. Рекомендуемые нормы указаны на фото ниже.
Таблица определения параметров нагревателя электропечи. Узнаем нужный диаметр и сечение
Если в таблице отсутствует точное значение, которое совпадает с Вашим расчетом, это не критично. Когда наша сила тока будет равна 6.8 А, стоит брать за основу показатель 7.7, то есть, ближайший больший. Минимальный диаметр и сечение обеспечат бесперебойный и безопасный процесс обжига.
Можно даже заложить в расчет нагревательной печи более мощный элемент для накала. Уменьшать параметры категорически нельзя, поскольку тогда он очень быстро перегорит
Технология постройки муфельной печи
Порядок выполнения работ горизонтальной ли вертикальной муфельной печи аналогичен, различие состоит в расположении элементов печи.
- Корпус муфельной печи выполняем из листового железа. Вырезаем болгаркой прямоугольную полоску нужного размера, сгибаем ее в радиус и при помощи сварки герметично завариваем шов. Для предотвращения образования коррозии можно покрыть металл несколькими слоями огнеупорной краски. К полученному цилиндру привариваем дно. Для этого вырезаем из листа стали круг необходимого диаметра, равного диаметру цилиндра. Укрепляем стенки и донышко металлической арматурой. Корпус выполняем такого объема, чтобы внутри можно было разместить термозащитный слой и огнеупорный кирпич.
- В случае если для корпуса используется старый холодильник, аналогично укрепляем его донышко и стенки металлическими уголками или трубками.
- Внутреннюю часть корпуса выкладываем толстым слоем базальтовой ваты.
- Для изготовления внутреннего термослоя (аккумулятора тепла) используем шамотный кирпич (огнеупорный). Задача состоит в состыковке кирпичей в количестве семи штук в форме трубы, которая будет в дальнейшем служить рабочей камерой печи.
- Для этого раскладываем кирпич в ряд и делаем на каждом кирпиче разметку, по которой будем производить резку. Форма кирпичей после резки должна позволять собрать все кирпичи в форме полой трубы. Обрезку производим болгаркой. Для удобства кирпичи нумеруем. После обрезки собираем их вместе и закрепляем проволокой, проверяя правильность резки. При необходимости подправляем форму, добиваясь точности.
Помещаем образовавшуюся кирпичную трубу в корпус со слоем теплоизоляции.
Далее на внутренней поверхности кирпичей необходимо пропилить канавки под проволоку.
Канавки под проволоку
Но прежде из мотка нихромовой или фехралевой проволоки необходимо сделать спираль диаметром около 6 мм. Для этого наматываем проволоку на основу (карандаш, сварочный электрод или тонкий металлический пруток).Достаем кирпичи и вновь выкладываем их на ровную поверхность в ряд.
Прикладываем спираль, делаем разметку под будущие канавки, которые будем вырезать в кирпичах болгаркой. Правильность линий проверяем строительным уровнем. В конечном итоге внутри рабочего пространства проволока будет уложена по спирали от дна к вершине рабочего пространства
Важно, чтобы витки не соприкасались друг с другом, иначе будет замыкание
Спираль в муфельной печи
Чтобы вывести концы проволоки за пределы рабочей камеры и подключить их к автомату, между двумя соседними кирпичами вставляем три тонких длинных отрезка керамической плитки с пропиленными в них тонкими каналами под проволоку.
Каналы под проволоку из муфельной печи
Применение таких керамических выводов в дальнейшем позволит легко производить ремонтные работы муфельной печи.
Коммутация электрической части с тремя ступенями мощности
- для первой ступени мощностей необходимо два контура спиралей включать последовательно;
- вторая ступень подразумевает отдельное подключение нижней спирали;
- третья ступень мощности – параллельное включение двух контуров.
Готовую конструкцию рабочей камеры помещаем в корпус со слоем теплоизолирующего материала и одним кирпичом, уложенным на дно, обмазывая его огнеупорной (печной) глиной или огнеупорным клеем.
Чтобы вывести керамические каналы за пределы корпуса, сверлим в нем отверстия.
Делаем корпус и обмазываем шамотной глиной
Крышку выполняем из листовой стали, вырезая ее по размеру печи и закрепляя на ней печной глиной огнеупорный кирпич. Сверху привариваем щеколду, ручки и навесы. Для герметичности по краям крышки и на примыкающие стенки муфельной печи наносим слой термостойкого силикона, предварительно тщательно обезжирив поверхности.
Муфельная печь в работе
После полного высыхания печи подключаем проволоку к электрическому автомату со стабилизатором и проводим ряд испытаний, настраивая мощность накала спиралей и температуру в рабочем пространстве увеличивая или уменьшая напряжение сети.
Во время работы печи дверцу необходимо плотно запирать.
Вычисляем сечение нагревателя
Чтобы спираль не расплавилась под напряжением, необходимо определиться с толщиной проволоки. Она подбирается под значение силы тока и температуру, до которой планируется разогревать печь. Эти показатели взаимосвязаны.
В таблице представлены основные значения, которые помогут определить диаметр проволоки:
Температура нагрева, градусов по Цельсию | Сечение проволоки, мм | |||
200 | 400 | 600 | 800 | |
Сила тока для работы проводника, А | ||||
2.3 | 37.5 | 54.5 | 64 | 7.07 |
37 | 60 | 80 | 93 | 12.6 |
52 | 83 | 105 | 124 | 19.6 |
Не рекомендуется покупать проволоку, которая будет работать на предельной мощности. Обычно подбирают проводник с запасом сечения, это гарантирует, что он не расплавиться при постоянной работе. К тому же производители иногда экономят на материале и есть риск купить бракованное изделие. Лучше подобрать проволоку для заданной силы тока с сечением на порядок выше.
Расчет спирали из нихрома и фехраля
Существует несколько способов расчета греющих спиралей, рассмотрим для начала более простой метод, учитывающий только сопротивление материала, а потом включим в расчет еще и изменение сопротивления под воздействием темепературы.
Способ расчета спирали по сопротивлению материала
В данном способе все довольно просто. Нам нужны первоначальные данные, на основе которых мы будем проводить вычисления. Они включают в себя:
Мощность нагревательного элемента, который хотите получить
Напряжение, при котором спираль будет работать
Диаметр и тип проволоки, который имеется в наличии
Предположим, у нас имеется электроприбор, который должен работать с мощностью 12 Вт под напряжением 24 В. При этом мы используем проволоку из нихрома с сечением 0,2 мм.
Для вычислений нам потребуется самая элементарная формула из общеобразовательного курса физики:
Мощность (Р) = Напряжение (U) * Сила тока (I)
І = Р: U = 12 : 24 = 0,5 А
Теперь воспользуемся законом Ома для определения сопротивления:
Сопротивление (R ) = Напряжение (U) * Сила тока (I) = 24/0,5 = 48 Ом
Теперь нам нужна формула для определения длины проводника:
Длина (L) = Площадь сечения (S) * Сопротивление (R) / Плотность материала (ρ)
Как же узнать сопротивление нихромовой проволоки? Помочь в решении данной задачи нам помогут таблицы плотности материалов или формулы для вычисления значения. Итак, если у нас проволока имеет диаметр 0,2, значит площадь сечения по формуле будет 0,0314 мм2, сопротивление смотрим по таблице и получаем длину проволоки 1,3 м.
Но это все чисто теоретически, ведь мы не знаем, сможет ли выдержать проволока данного диаметра такой ток. Посмотрим таблицу, в ней указаны максимальные значения тока для проволоки определенного диаметра. В нашем случае это 0,65, значит наше значение 0,5 лежит в допустимых пределах.
Также не забывайте учесть среду, в которой будет работать нагреватель. Если вы греете жидкость, можно смело увеличивать силу тока вдвое, а если замкнутое пространство – наоборот, уменьшать.
Способ расчета спирали по температуре
Тот, способ, который мы описывали выше, является не очень точным по той причине, что нами не было взято в расчет изменение сопротивления резистивной проволоки при росте температуры. Поэтому его можно применять только для не слишком высоких температур до 200-250 градусов. Для высокотемпературных печей данный расчет будет совсем неточным, поэтому рассмотрим второй метод.
Возьмем муфельную печь отжига и определим объем камеры и нужную мощность. Помогут с вычислениями нам такие два правила.
Если объем печи меньше 50 литров, то подбираем мощность 100 Вт на литр
Если же объем печи больше 100 литров, мощность рассчитывается как 50-70 Вт на литр
Допустим, наша печь отжига имеет объем 50 литров, мощность тогда будет 5 кВт. Если напряжение в сети должно быть стандартные 220 В, то сила тока и сопротивление будет равны:
І = 5000:220 = 22,7 А
R = 220:22,7 = 9,7 Ом
Подключение звездой при напряжении 380 В потребует деления мощности на 3 фазы, тогда наша мощность для одной фазы будет равна 5кВт / 3 = 1,66 кВт
Подключение звездой предполагает, что на каждую из фаз будет подаваться напряжение питания 220 В, следовательно значения сопротивления и силы тока будет такими:
І = 1660/220 = 7,54 А
R = 220/7,54 = 29,1 Ом
Второй тип подключения ТЭНов для напряжения в 380 В «треугольник» предполагает подачу линейного напряжения в 380 В, поэтому мы получим:
І = 1660/380 = 4,36 А
R = 380/4,36 = 87,1 Ом
При помощи ниже указанных таблиц мы можем найти удельную поверхностную мощность нагревательного элемента и вычислить на его основе длину проволоки.
Поверхностная мощность = βэф*α(коэффициент эффективности)
В итоге, чтобы наша печь нагрелась до 1000 С, нагревательный элемент должен производить температуру в 1100 градусов. Возьмем таблицы и выберем соответствующие значения. Тогда получим:
Поверхностная мощность (Вдоп)=4,3∙0,2=0,86Вт/см2=8600 Вт/м2
Диаметр определяется по формуле d= 3 √((4*Rt*P 2 )/(π 2 *U 2 *Вдоп))
Rt — удельное сопротивление материала при нужной температуре берем из таблицы
Если наша спираль изготовлена из нихрома марки Х80Н20, Rt будет равняться 1,025. Значит Рт=1,13 * 10 6 * 1,025 = 1,15 * 10 6 Ом на мм
При подключении типа «звезда»: диаметр равен 1,23 мм, длина = 42 м
Если же мы проверим результат по упрощенной формуле L=R/(p*k)
Получим 29,1/(0,82*1,033)= 34 м
Из этого мы видим, что не учитывая температуру мы получаем совсем другое значение длины проволоки и более правильным является выбор второго метода.
Напряжение питания паяльников
Электрические паяльники выпускаются рассчитанные на напряжение питающей сети 12, 24, 36, 42 и 220 В, и этому есть свои причины. Главной, является безопасность человека, второй – напряжение сети в месте выполнена паяльных работ. В производстве, где все оборудование заземлено и имеется высокая влажность, разрешено использовать паяльники напряжением не более 36 В, при этом корпус паяльника должен быть обязательно заземлен. Бортовая сеть у мотоцикла имеет напряжение постоянного тока 6 В, легкового автомобиля – 12 В, грузового – 24 В. В авиации используют сеть частотой 400 Гц и напряжением 27 В.
Расчет и ремонт нагревательной обмотки паяльника
При ремонте или при самостоятельном изготовлении электрического паяльника или любого другого нагревательного прибора приходится мотать нагревательную обмотку из нихромовой проволоки. Исходными данными для расчета и выбора проволоки является сопротивление обмотки паяльника или нагревательного прибора, которое определяется исходя из его мощности и напряжения питания. Рассчитать, какое должно быть сопротивление обмотки паяльника или нагревательного прибора можно с помощью таблицы.
Вам понадобится
Спираль, штангенциркуль, линейка. Необходимо знать материал спирализначения силы тока I и напряжения U при которых будет работать спираль, и из какого материала она сделана.
Инструкция
Выясните, какое сопротивление R должно быть у вашей спирали. Для этого воспользуйтесь законом Ома и подставьте значение силы тока I в цепи и напряжения U на концах спирали в формулу R=U/I.
По справочнику определите удельное электрическое сопротивление материала ρ, из которого будет сделана спираль. ρ должно быть выражено в Ом м. Если значение ρ в справочнике дано в Ом мм²/м, то умножьте его на 0,000001.Например: удельное сопротивление меди ρ=0,0175Ом мм²/м, при переводе в СИ имеем ρ=0,0175 0,000001=0,0000000175Ом м.
Длину проволоки найдите по формуле: Lₒ=R S/ρ.
Отмерьте линейкой на спирали произвольную длину l (например: l=10см=0,1м). Посчитайте число витков n, приходящих на эту длину. Определите шаг спирали H=l/n или измерьте его штангенциркулем.
Найдите сколько витков N можно сделать из проволоки длиной Lₒ: N= Lₒ/(πD+H).
Длину самой спирали найдите по формуле: L=Lₒ/N.
Шарф-спираль также называют шарф-боа, шарф-волна. Здесь главное — вовсе не вид пряжи, не рисунок вязки и не расцветка готового изделия, а техника исполнения и оригинальность модели. Шарф-спираль олицетворяет праздничность, пышность, торжественность. Он похож и на изящное кружевное жабо, и на экзотическое боа, и на обычный, но очень оригинальный шарф.
Область применения в промышленности и в быту
Нихромовую продукцию используют в местах, требующих качественного металла. Особенно востребована в индустриальном производстве.
В промышленном производстве
Одно из первых мест металлическая продукция занимает на рынке промышленного и бытового электрического оборудования. Широкое применение она нашла в производственных отраслях, использующих электронагревательные печи, печи обжига и сушки, печи, нагревающиеся до высоких температур, аппараты, обладающие тепловым воздействием. Ее используют в сварочных аппаратах, бытовых обогревателях и системах обогрева стекол и зеркал заднего вида автомобиля, в резисторах, узлах сопротивления и реостатах в качестве нагревательного или резисторного элемента. Как уже отмечалось выше, материал находит широкое применение среди домашних умельцев.
В домашнем хозяйстве
В бытовой сфере применяется для резки пенопласта и полистирола. В домашних условиях разрезать эти материалы довольно проблематично. Есть несколько способов. Часто для этих целей используется нож, от которого материал начинает крошиться.
Домашние умельцы знают, чем резать пенопласт в домашних условиях, чтобы он не крошился. Для этого понадобится нихромовая проволока. Она нужна для того, чтобы сделать станок, режущим инструментом которого является разогретая струна. С его помощью можно резать пенопласт и изготавливать изделия из него своими руками.
Для резки пенопласта в домашнем хозяйстве можно сконструировать простейший станок с вертикальным или горизонтальным расположением режущего инструмента
Как сделать резак для пенопласта своими руками
Сделать станок не представляет сложности. Для этого потребуется:
- понижающий трансформатор;
- подкладка из трубы (труба толщиной не менее 20 мм, толщина пенопласта – не менее 2 см);
- пружины для натяжки струны;
- металлическая струна.
Для изготовления столешницы понадобится стол, доска и лист профнастила.
Простейший вариант станка для резки пенопласта, который можно сделать своими руками
Понижающий трансформатор можно изготовить своими руками из трансформаторного железа. Понадобится сделать реостат, чтобы подобрать величину тока. Для этого можно взять спираль из электроплитки, предварительно растянув ее в струну. Каркас обмотки сооружается из асбестоцементной или керамической трубы толщиной 15-20 мм и длиной около 80 мм.
Для фигурной резки используется терморезак из куска нихромовой проволоки. Его закрепляют на ручке из изоляционного материала. Самодельный резак для пенопласта отлично справляется с задачей, в том числе и с фигурной резкой материала Приспособление позволяет делать углубления, вырезать полости, работать с пенопластом так, как скульптор работает с глиной.
Резак для пенопласта можно сравнить с инструментом скульптора, работающего с глиной
С помощью самодельных приспособлений, в которых нашла применение нихромовая проволока, можно не только нарезать пенопласт, но и выжигать по дереву. Также ее можно использовать в самодельных бытовых обогревателях, сварочных аппаратах, в системах обогрева автомобильных стекол и зеркал заднего вида.
Таблица тепловой мощности, необходимой для различных помещений
(разница температуры внутри помещения и наружной температуры — 30°С)
тепл. мощн., кВт | объём помещения при хорошей теплоизоляции (новое здание), м3 | объём помещения при плохой теплоизоляции (старое здание), м3 | площадь теплицы из теплоизолированного стекла и с двойной фольгой, м2 | площадь теплицы из обычного стекла с фольгой, м2 |
5 | 70 ÷ 150 | 60 ÷ 110 | 35 | 18 |
10 | 150 ÷ 300 | 130 ÷ 220 | 70 | 37 |
20 | 320 ÷ 600 | 240 ÷ 440 | 140 | 74 |
30 | 650 ÷ 1000 | 460 ÷ 650 | 210 | 110 |
40 | 1050 ÷ 1300 | 650 ÷ 890 | 300 | 150 |
50 | 1350 ÷ 1600 | 900 ÷ 1100 | 370 | 180 |
60 | 1650 ÷ 2000 | 1150 ÷ 1350 | 440 | 220 |
75 | 2100 ÷ 2500 | 1400 ÷ 1650 | 550 | 280 |
100 | 2600 ÷ 3300 | 1700 ÷ 2200 | 740 | 370 |
125 | 3400 ÷ 4100 | 2300 ÷ 2700 | 920 | 460 |
150 | 4200 ÷ 5000 | 2800 ÷ 3300 | 1100 | 550 |
200 | 5000 ÷ 6500 | 3400 ÷ 4400 | 1480 | 740 |
Ответ на вопрос : КУДА УХОДИТЛЕТО ТЕПЛО?
Классификация муфельных печей
По типу нагревательных элементов муфельные печи подразделяют на:
- электрические;
- газовые.
По предназначению они делятся на:
- для плавки металла;
- для обжига керамики;
- для плавки стекла;
- для закалки металла;
Бывают также промышленные и самодельные муфельные печи.
Промышленная муфельная печь с автоматикой
Но печи, работающие на газу сделать в домашних условиях невозможно, хотя газ и дешевле электричества, так как подобные эксперименты запрещены законодательством. Электрическое управление печью обеспечивает удобство регулирования температурного режима.
По конструктивному типу муфельные печи делят на:
- горизонтальные (наиболее простые);
- вертикальные или горшкового типа;
- колпаковые;
- трубчатые.
Нагрев может производиться в воздушной среде, в вакууме или в газовой среде. В домашних условиях есть возможность только для конструирования печи с термической обработкой изделий в воздушной среде.
При самостоятельном выполнении муфельной печи ей можно придать желаемую форму и объем, оформить ее в подходящем для интерьера стиле.
Основные части конструкции
- Внешняя часть печи, оболочка (корпус).В качестве корпуса для будущей муфельной печи удобно использовать вышедшую из употребления газовую плиту, точнее духовку от нее или электрическую печку. Для их использования демонтируют все пластиковые детали. В случае, когда нет возможности использовать такие варианты корпуса, его сваривают из листового металла (толщина не менее двух миллиметров).
- Теплоизоляционный слой. Эта часть конструкции крайне важна. От ее качества зависит КПД печи и теплопотери, которые она понесет. Внутренний слой термоизоляции – это огнеупорный (шамотный) кирпич, способный выдержать температуру до одной тысячи градусов.
- Внешний слой, сокращающий потери тепла в окружающее пространство, прокладывают из перлита или базальтовой ваты. Асбест использовать небезопасно, при его нагревании происходит выделение в атмосферу канцерогенных веществ.
- Элементы, непосредственно нагревающие рабочее пространство. Нагревательными элементами внутри муфельной печи служат спирали, скрученные из нихромовой или фехралевой проволоки. Толщина 1 мм. Нихромовая (никель-хромовая) проволока очень пластична и устойчива к коррозии.
- Фехралевая (алюминий, хром, железо) проволока несколько дешевле из-за отсутствия в составе алюминия и также обладает необходимыми свойствами для ее применения в муфельной печи.
Список материалов и инструментов для сборки конструкции
- болгарка (машинка для шлифовки и резки материалов) с отрезными кругами для металла;
- сварочный аппарат;
- листовая сталь толщиной >2мм;
- металлические уголки;
- шамотный огнестойкий кирпич;
- огнеупорная смесь;
- силикон термостойкий;
- базальтовый термоизолятор (вата, плотностью 200 кг/м3) или перлит;
- защитные очки и респиратор;
- нихромовая (фехралевая) проволока сечением 1 мм;
- кусачки или ножницы по металлу.
Изготовление устройства
В данном случае мы расскажем, как сделать вертикальную муфельную печь для обжига керамики своими руками.
Для этого вам понадобятся следующие инструменты:
- углошлифовальная машина (болгарка) и 1-2 круга;
- электро-дуговая сварка и электроды;
- слесарный инструмент, в том числе кусачки;
- 2-миллиметровая нихромовая проволока.
и материалы:
- 2,5 мм стальной лист или корпус б/у духовки;
- уголок;
- арматура;
- базальтовая вата;
- огнеупорный шамотный кирпич;
- огнеупорный раствор;
- герметик силиконовый.
Как проверить правильность поверхностной мощности нагревательного элемента
Если Вы планируете создать долговечные трубчатые печи, расчет обязательно должен включать и пункт проверки поверхностной мощности нагревательного элемента с допустимым значением. Это поможет вовремя обнаружить возможный выход из строя и определить грани возможностей данной составляющей оборудования.
Поверхностная удельная мощность указывает сколько тепловой энергии нужно получать с каждой единицы площади нагревателя
Методика расчета трубчатых печей вначале подразумевает поиск допустимого значения. Его можно получить по формуле:
βдоп = βэф х α
βдоп – непосредственно допустимая мощность.
βэф – мощность, которая зависит от диапазона рабочих температур.
α – коэффициент эффективности излучения тепла нагревательным элементом.
В расчет печи для обжига включаем показатель βэф и α из таблиц, представленных на фото ниже.
Таблица для расчета эффективной мощности на основе температуры заготовок и самого нагревателя
Коэффициент α также подбирается из табличных данных. Он напрямую зависит от местоположения спирали нагревателя внутри конструкции печи.
Значения поправочного коэффициента – важный аспект, который стоит учитывать, выполняя расчет шахтных печей
Впоследствии эти 2 показателя умножаются между собой и дают нам граничное значение допустимой мощности.
Это станет последним этапом проектирования оборудования.
Как видите, расчет нагревательных элементов – дело достаточно непростое. Поэтому, проще и лучше заказать электропечи для обжига и других видов термообработки от надежного производителя. Именно таким является литовский изготовитель SNOL, продукция которого представлена на нашем сайте. Не откладывайте и скорее выбирайте нужную модель!
Преимущества и недостатки муфельных печей
Схема муфельной печи
Муфельная печь предназначена для термической обработки различных деталей. Используются очень высокие температуры, они дают возможность работать с золотом и глиной. Разогретая рабочая камера позволяет обрабатывать поверхности деталей различными элементами (азотом, хромом или углеродом). Благодаря использованию муфеля камера полностью изолируется от побочных выделений, возникающих при горении любого вида топлива.
Таким образом, помещенная в печь деталь обрабатывается только температурой. Равномерное расположение закрытых нагревателей вокруг защитного кожуха в совокупности с используемыми для его изготовления материалами позволяет добиться равного распределения температуры по всему объему рабочей зоны.
Определяем мощность печи и силу тока
Итак – у вас есть камера, которая будет использоваться для нагрева. Перед расчетами вам необходимо определить мощность будущей печи, вычислив литраж. Для этого нужно измерить длину, ширину и высоту и перевести ее в литры.
В таблице представлена мощность печи согласно объемам:
Литраж | Мощность (Вт/л |
1-5 | 300-500 |
6-10 | 120-300 |
11-50 | 80-120 |
51-100 | 60-80 |
101-500 | 50-60 |
Теперь определяем силу тока – нужно мощность печи разделить на напряжение. Первый показатель находим в таблице, за напряжение берем значение для бытовой сети – 220 вольт. Теперь мы знаем силу тока, которая потребуется для нашей печи, остается лишь определиться со спиралью.
Сколько стоят нихромовые или фехралевые нагреватели
Стоимость муфельной печи напрямую зависит от особенностей элементов ее сборки. Важную роль в формировании цены имеет и материал нагревателя. Ключевое отличие фехраль от нихрома в том, что обойдется соединение железа, хрома и алюминия в 3-5 раз дешевле, чем то, где есть никель.
Не стоит спешить при выборе сплава. Для начала просчитайте:
- Максимальную температуру нагрева.
- Время бесперебойного функционирования техники.
- Частоту включений и выключений оборудования.
Только после этого стоит принимать решение о покупке. Не стоит гнаться за более низкой ценой. Если нагреватель будет быстро изнашиваться, его постоянные замены и перебои при эксплуатации прибора обойдутся значительно дороже.
Купить муфельные печи с качественными нагревателями, Вы всегда можете в . Мы подберем для Вас идеальное решение «под ключ», которое будет надежным и долговечным. Обращайтесь!
Краткий анализ
Fechral – сплавы группы железо-хром-алюминий (FeCrAl), используемые в широком диапазоне сопротивлений и при высоких температурах. Сплавы известны своей способностью выдерживать высокие температуры (до 1400 ° C (2550 ° F)), и имеющие промежуточное электрическое сопротивление (1,20 — 1,30 Ом · м).
Типичные области применения сплавов FeCrAl — это электрические нагревательные элементы в высокотемпературных печах для термообработки, керамической, стекольной, сталелитейной и электронной промышленности.
Среди достоинств фехрали можно отметить следующие:
-
высокая рабочая температура;
Ферритные сплавы FeCrAl можно использовать в среднем до 1400 °C, в то время как аустенитные сплавы NiCr имеют максимальную рабочую температуру до 1250 °C. -
высокое удельное сопротивление;
Удельное сопротивление сплавов FeCrAl выше, чем сплавов NiCr. Это дает возможность выбирать материалы с большим поперечным сечением, тем самым продлевая срок службы элементов. Значительная экономия веса может быть получена, особенно при использовании тонкой проволоки — чем выше удельное сопротивление, тем меньше материалов используется. Кроме того, на удельное сопротивление сплавов FeCrAl меньше влияет холодная обработка и термообработка по сравнению со сплавами NiCr. -
более долгая жизнеспособность;
Сплавы FeCrAl могут использоваться от 2 до 4 раз дольше, чем сплавы NiCr, эксплуатируемые при той же температуре в атмосфере. -
более высокая поверхностная нагрузка;
Более высокая рабочая температура и более длительный срок службы сплавов FeCrAl гарантируют способность выдерживать высокие поверхностные нагрузки. -
небольшой вес и невысокая стоимость;
Вес сплавов FeCrAl ниже, чем сплавов NiCr. Благодаря тому, что сплавы FeCrAl не содержат никель, его цена ниже, чем на сплавы NiCr. В результате в большом количестве применений может быть достигнута значительная экономия веса и стоимости элементов. -
отличные окислительные свойства;
Оксид алюминия (Al2O3), образующийся на поверхности сплавов FeCrAl, имеет лучшие адгезионные свойства и, следовательно, менее загрязняется. -
стойкость к сере;
Сплавы FeCrAl могут противостоять коррозии в атмосфере и материалах, загрязненных серой или ее соединениями. В таких условиях сплавы NiCr подвержены сильной эрозии.
Нихром (NiCr) — группа сплавов с содержанием Ni 55-78%, Cr 15-23% в зависимости от марки и добавками Mn, Si, Fe и Al. Сплавы известны своей способностью выдерживать высокие температуры (до 1250 ° C (2280 ° F), и имеют промежуточное электрическое сопротивление (1,05–1,40 Ом * м). Сплавы NiCr обладают отличнойустойчивостью к высокотемпературному окислению, коррозии и имеют хорошую износостойкость.
Благодаря своей стойкости к окислению и стабильности при высоких температурах нихром широко используется в электронагревательных установках, таких как электрические печи, печи для обжига и сушки, его используют в производстве различных нагревательных устройств.
Среди достоинств нихрома можно отметить следующие:
-
идеальная стабильность формы при высоких температурах;
Сплавы NiCr устойчивы к деформации и сохраняют очень хорошую стабильность формы при высоких температурах благодаря тому факту, что они имеют более высокий предел прочности при нагревании и ползучести, чем сплавы FeCrAl. -
немагнитные свойства;
Сплав NiCr — немагнитный материал, который можно использовать при низких температурах. Между тем сплав FeCrAl немагнитен при температурах выше 600 °C. -
хорошая пластичность после длительного использования;
Сплавы NiCr остаются пластичными после длительного использования. Это свойство делает нагревательные элементы более прочными. -
высокая излучательная способность;
Сплавы NiCr имеют более высокий коэффициент излучения, чем сплавы FeCrAl в полностью окисленном состоянии. При одинаковой поверхностной нагрузке температура элементов сплава NiCr ниже, чем сплавов FeCrAl. -
устойчивость к коррозии;
Как правило, сплавы NiCr имеют лучшую коррозионную стойкость при комнатной температуре, чем неокисленные сплавы FeCrAl (за исключением серной среды и контролируемой атмосферы).
Итоги
Онлайн калькулятор для расчета спирали поможет вам с быстрыми предварительными расчетами, но для точного учета всех особенностей даже второго метода расчета с учетом температуры может быть не достаточно
На практике существует еще очень много факторов, которые нужно взять во внимание при расчете параметров нагревателя
Если вам нужна помощь с расчетами нагревателей – обращайтесь к нам.
Наши специалисты имеют огромный опыт в проектировании нагревательных элементов для различного промышленного оборудования. Мы поможем с расчетами оптимальных параметров нагревательных элементов для вашего оборудования и можем изготовить любой тип нагревателей для Вас.
Источник