Влияние воздушной прослойки
В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.
Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:
а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;
б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).
Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.
Выбираем материал стен дома, основываясь на теплопроводность материалов
Из курса физики мы знаем, что любая система стремится к равновесию. Поэтому, если у нас есть перепады температур, тогда сразу же возникает перетекание тепла. Т.е. тепловая энергия перетекает из теплого в холодное. Таким образом, наш дом будет отдавать свое тепло наружу через все, что только возможно, стены, крышу, пол, окна, двери, как видно на фото из-за разницы температур. В итоге дом полностью остынет и приравняется к внешней температуре.
Посчитать это можно по данной формуле расчета коэффициента теплопроводности. То есть, сколько тепла за единицу времени протекает через 1 кв.м. материала при градиенте температур 1 градус на 1 метр (на рисунке это показано с одной стороны куба 20 градусов с другой 19 градусов)
Коэффициент теплопроводности кирпича, коэффициент теплопроводности дерева
Мы видим из подсчетов, что у дерева теплопроводность в 3 раза меньше. Это означает, что при прочих равных условиях (равная толщина материала и температур) протекаемость тепла в кирпиче в 3 раза быстрее, а в дереве в 3 раза медленнее относительно кирпича. Поэтому дерево более энергосберегающий материал. Если мы хотим чтобы у кирпича была такая теплопотеря, как у дерева, значит, толщину кирпича нужно увеличить втрое. Простая арифметика! Теперь посмотрим, что будет в случае с каркасным домом. В каркасном доме 90% объема стены занимает утеплитель, в нашем случае возьмем самый экологичный материал – каменную вату на базальтовой основе. На фото мы видим, что коэффициент теплопроводности 0,038, а это в 5 раз меньше теплопроводность, чем у дерева, а с кирпичом разница аж в 15 раз.
На одной из выставок, я увидел замечательный стенд, который наши расчеты и подтверждает. На этом стенде сравниваются: сверху дерево (клееный брус), пеноблок и каркасник. Все материалы равной толщины. С одной стороны материал нагревается пленочным теплым полом, с другой стороны стоит термометр, который показывает уровень исходящего тепла. Конечно, качество фото оставляет желать лучшего. Итак… смотрим на стенд с разных сторон
Смотрим на нижние показатели на градуснике, к сожалению практически не видно цифр на градуснике, поэтому я назову их сверху вниз: Дерево – 28° С Пеноблок – почти 30° С Каркасная стена – 25° С
Коэффициент материалов из бетона
Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.
Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:
- Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
- Пенобетона – 0,08-0,29.
- Керамзитобетона – 0,14-0,66.
- Красный глиняный кирпич – 0,56.
- Силикатный кирпич – 0,7.
- Блоков из газосиликата – 0,072-0,165.
- Теплопроводность штукатурки – 0,1-1.
Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.
Эффективность многослойных конструкций
Плотность и теплопроводность
В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:
- соответствовать расчётным нормам строительства и энергосбережения;
- оставлять размеры ограждающих конструкций в пределах разумного;
- уменьшить материальные затраты на строительство объекта и его обслуживание;
- добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).
Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.
Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух
Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух
Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.
Расчёт толщины стен и утеплителя
Расчёт толщины стены зависит от следующих показателей:
- плотности;
- расчётной теплопроводности;
- коэффициента сопротивления теплопередачи.
Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.
Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.
Таблица 2
Показатель | Бетоны, растворно-бетонные смеси | |||
Железобетон | Цементно-песчаный раствор | Сложный раствор (цементно-известково-песчаный) | Известково-песчаный раствор | |
плотность, кг/куб.м | 2500 | 1800 | 1700 | 1600 |
коэффициент теплопроводности, Вт/(м•°С) | 2,04 | 0,93 | 0,87 | 0,81 |
толщина стен, м | 6,53 | 2,98 | 2,78 | 2,59 |
Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).
Таблица 3.1
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Пемзобетон | Керамзитобетон | Полистиролбетон | Пено- и газобетон (пено- и газосиликат) | Кирпич глиняный | Силикатный кирпич | |
плотность, кг/куб.м | 800 | 800 | 600 | 400 | 1800 | 1800 |
коэффициент теплопроводности, Вт/(м•°С) | 0,68 | 0,326 | 0,2 | 0,11 | 0,81 | 0,87 |
толщина стен, м | 2,176 | 1,04 | 0,64 | 0,35 | 2,59 | 2,78 |
Таблица 3.2
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Кирпич шлаковый | Силикатный кирпич 11-типустотный | Кирпич силикатный 14-типустотный | Сосна (поперечное расположение волокон) | Сосна (продольное расположение волокон) | Фанера клеёная | |
плотность, кг/куб.м | 1500 | 1500 | 1400 | 500 | 500 | 600 |
коэффициент теплопроводности, Вт/(м•°С) | 0,7 | 0,81 | 0,76 | 0,18 | 0,35 | 0,18 |
толщина стен, м | 2,24 | 2,59 | 2,43 | 0,58 | 1,12 | 0,58 |
Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.
Таблица 4
Показатель | Теплоизоляционные м-лы | ||||||
ППТ | ПТ полистиролбетонные | Маты минераловатные | Плиты теплоизоляционные (ПТ) из минеральной ваты | ДВП (ДСП) | Пакля | Листы гипсовые (сухая штукатурка) | |
плотность, кг/куб.м | 35 | 300 | 1000 | 190 | 200 | 150 | 1050 |
коэффициент теплопро- водности, Вт/(м•°С) | 0,39 | 0,1 | 0,29 | 0,045 | 0,07 | 0,192 | 1,088 |
толщина стен, м | 0,12 | 0,32 | 0,928 | 0,14 | 0,224 | 0,224 | 1,152 |
Значения таблиц теплопроводности строительных материалов применяются при расчётах:
- теплоизоляции фасадов;
- общестроительной изоляции;
- изоляционных материалов при устройстве кровли;
- технической изоляции.
Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.
Таблица теплопроводности материалов
Материал | Теплопроводность материалов, Вт/м*⸰С | Плотность, кг/м³ |
Пенополиуретан | 0,020 | 30 |
0,029 | 40 | |
0,035 | 60 | |
0,041 | 80 | |
Пенополистирол | 0,037 | 10-11 |
0,035 | 15-16 | |
0,037 | 16-17 | |
0,033 | 25-27 | |
0,041 | 35-37 | |
Пенополистирол (экструдированный) | 0,028-0,034 | 28-45 |
Базальтовая вата | 0,039 | 30-35 |
0,036 | 34-38 | |
0,035 | 38-45 | |
0,035 | 40-50 | |
0,036 | 80-90 | |
0,038 | 145 | |
0,038 | 120-190 | |
Эковата | 0,032 | 35 |
0,038 | 50 | |
0,04 | 65 | |
0,041 | 70 | |
Изолон | 0,031 | 33 |
0,033 | 50 | |
0,036 | 66 | |
0,039 | 100 | |
Пенофол | 0,037-0,051 | 45 |
0,038-0,052 | 54 | |
0,038-0,052 | 74 |
Экологичность.
Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.
Пожарная безопасность.
Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.
Паро- и водонепроницаемость.
Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.
Долговечность.
В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.
От чего зависит теплопроводность?
Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.
Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.
Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.
В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.
Эффективность многослойных конструкций
Плотность и теплопроводность
В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:
- соответствовать расчётным нормам строительства и энергосбережения;
- оставлять размеры ограждающих конструкций в пределах разумного;
- уменьшить материальные затраты на строительство объекта и его обслуживание;
- добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).
Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.
Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух
Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух
Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.
Расчёт толщины стен и утеплителя
Расчёт толщины стены зависит от следующих показателей:
- плотности;
- расчётной теплопроводности;
- коэффициента сопротивления теплопередачи.
Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.
Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.
Таблица 2
Показатель | Бетоны, растворно-бетонные смеси | |||
Железобетон | Цементно-песчаный раствор | Сложный раствор (цементно-известково-песчаный) | Известково-песчаный раствор | |
плотность, кг/куб.м | 2500 | 1800 | 1700 | 1600 |
коэффициент теплопроводности, Вт/(м•°С) | 2,04 | 0,93 | 0,87 | 0,81 |
толщина стен, м | 6,53 | 2,98 | 2,78 | 2,59 |
Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).
Таблица 3.1
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Пемзобетон | Керамзитобетон | Полистиролбетон | Пено- и газобетон (пено- и газосиликат) | Кирпич глиняный | Силикатный кирпич | |
плотность, кг/куб.м | 800 | 800 | 600 | 400 | 1800 | 1800 |
коэффициент теплопроводности, Вт/(м•°С) | 0,68 | 0,326 | 0,2 | 0,11 | 0,81 | 0,87 |
толщина стен, м | 2,176 | 1,04 | 0,64 | 0,35 | 2,59 | 2,78 |
Таблица 3.2
Показатель | Конструкционно-теплоизоляционные м-лы | |||||
Кирпич шлаковый | Силикатный кирпич 11-типустотный | Кирпич силикатный 14-типустотный | Сосна (поперечное расположение волокон) | Сосна (продольное расположение волокон) | Фанера клеёная | |
плотность, кг/куб.м | 1500 | 1500 | 1400 | 500 | 500 | 600 |
коэффициент теплопроводности, Вт/(м•°С) | 0,7 | 0,81 | 0,76 | 0,18 | 0,35 | 0,18 |
толщина стен, м | 2,24 | 2,59 | 2,43 | 0,58 | 1,12 | 0,58 |
Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.
Таблица 4
Показатель | Теплоизоляционные м-лы | ||||||
ППТ | ПТ полистиролбетонные | Маты минераловатные | Плиты теплоизоляционные (ПТ) из минеральной ваты | ДВП (ДСП) | Пакля | Листы гипсовые (сухая штукатурка) | |
плотность, кг/куб.м | 35 | 300 | 1000 | 190 | 200 | 150 | 1050 |
коэффициент теплопро- водности, Вт/(м•°С) | 0,39 | 0,1 | 0,29 | 0,045 | 0,07 | 0,192 | 1,088 |
толщина стен, м | 0,12 | 0,32 | 0,928 | 0,14 | 0,224 | 0,224 | 1,152 |
Значения таблиц теплопроводности строительных материалов применяются при расчётах:
- теплоизоляции фасадов;
- общестроительной изоляции;
- изоляционных материалов при устройстве кровли;
- технической изоляции.
Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.
Применение осины при производстве мебели
Качества осиновой древесины мы выяснили выше, исходя из них понятно применение осины при производстве мебели: её рекомендуют при высокой влажности в помещении. В сочетании с тем, что ожога от прикосновения к горячей древесине не будет, осиновая мебель удачно вписывается в декор бани или сауны.
Цена на осиновую мебель невысока, зато от неё приятный запах спокойствия. К тому же такой предмет интерьера сложно испачкать. Однако некоторым людям кажется мебель из этой породы дерева непрезентабельной. Если применялось больное дерево, то есть возможность подгнивания мебели изнутри. Рекомендуют осиновую мебель тем, кто выбрал для дома стиль кантри.
Надеемся, что сведения о дереве осина, её применении и свойствах были полезны.
Осина – целебное дерево, способное помочь в нетрадиционном лечении заболеваний, связанных с воспалительными процессами и сахарным диабетом. Это доступное растительное сырье, которое каждый человек при желании может собрать самостоятельно и изготовить из него лекарственное средство. Главными его плюсами являются натуральность, мягкое действие и доказанная практикой эффективность.
Что такое теплопроводность
В теории теплопроводность – это способность материала проводить энергию или тепло от более нагретых частей к менее тёплым, путём хаотического движения частиц тела. На практике это минимизация тепловых потерь через строительные конструкции. У разных материалов своя теплопроводность. Дерево менее податливо к таким действиям, а металл наоборот нагревается до такой степени¸ что его тяжело держать в руках.
Для характеристики проводника тепла придумали такую единицу, как коэффициент. Обозначают её греческой буквой λ и измеряют в Вт/(м*℃). Иногда вместо градусов Цельсия в этой формуле указаны градусы Кельвина (К), но суть от этого не меняется. Этот коэффициент показывает способность передачи тепла материалом на определённое расстояние за единицу времени. Но показатель характеризует само вещество, не привязываясь к размерам изделия.
КТП некоторых материалов Источник pobetony.expert
При покупке стройматериала у продавца можно попросить паспорт на продукт и посмотреть коэффициент теплопроводности. Сырье, отличающееся высокой проводимостью тепла, используют в качестве радиаторов, так как их стенки будут передавать нагрев от теплоносителя.
Чем меньше коэффициент теплопроводности материала для стены здания, тем меньше оно будет терять тепла во время холодной погоды. И тем меньше можно делать толщину стены. В справочниках чаще всего указывают несколько значений теплопроводности для материала (от трёх и больше). Это происходит из-за того, что сам коэффициент меняется в зависимости от температуры и других факторов, например, влаги, при которой значение увеличивается.
Вспененная древесина Источник inpromen.ru
Описание и сравнение утеплителей
Сегодня потребитель может выбрать материал, свойства которого удовлетворяют его запросы в той или иной степени. От того, какой выбор вы делаете, зависит и монтаж утеплителя – справитесь ли вы с ним сами, или придется вызывать специалистов. Структура и текстура материалов имеет значение.
Основываясь на этом критерии можно выделить:
- Плиты – представляют собой стройматериал разной плотности и толщины, который изготовлен с помощью склеивания и прессования;
- Пеноблоки – сделаны из бетона, с включением специальных добавок, пористой структура получается вследствие химической реакции;
- Вата – реализуется в рулонах, имеет волокнистую структуру;
- Крошка или гранулы – сыпучий уплотнитель включает пеновещества различной фракции.
Свойства, стоимость и функционал материала – вот на что обращается внимание. Обычно на материале указывается, для какой именно поверхности он предназначен. Сырье для утеплителя может быть разным, а целом же оно бывает органическим и неорганическим
Сырье для утеплителя может быть разным, а целом же оно бывает органическим и неорганическим.
Органические утеплители делают на основе торфа, древесины и камыша. Неорганические утеплители – это минералы, вспененный бетон, вещества с содержанием асбеста и т.д. Стоит научиться оценивать и понимать свойства различных веществ.
Конструкционные материалы и их теплопроводность
Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.
Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.
Бетон
- Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
- Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.
Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.
Железобетон
- Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
- Теплопроводность: 1,69 Вт/м*К.
Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.
Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.
Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.
Керамзитобетон
Полнотелые керамзитобетонные блоки производятся с помощью вибропрессования. Не имеют пустот и отверстий. Часто используются для кладки несущих стен или закладки фундамента.
Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.
Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.
- Плотность: 500 кг/м³–1 800 кг/м³.
- Теплопроводность: 0,14–0,66 Вт/м*К.
Газобетон
Изготавливается из газосиликата. С помощью специализированных газообразователей внутри блока формируют приблизительно сферические поры (пустоты), их диаметр 1–3 мм.
- Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
- Теплопроводность: 0,1–0,3 Вт/м*К.
Пенобетон
Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.
- Плотность: 600–1 000 кг/м3.
- Теплопроводность: 0,1–0,38 Вт/м*К.
Изготавливается из глины и наполнителя.
- Плотность: 500 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,1–0,4 Вт/м*К.
Керамический кирпич
Изготавливается из обожжённой глины.
- Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
- Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.
Изготавливается из песка и извести.
- Плотность: 1 100 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,81–0,87 Вт/м*К.
Дерево
- Плотность: 150 кг/м³–2 100 кг/м³;
- Теплопроводность: 0,2–0,23 Вт/м*К.
Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.
Преимущества и недостатки теплоизоляторов
Пенополиуретан
Считается одним из самых эффективных утеплителей современности.
Преимущества: монтаж однородного бесшовного покрытия, долгий срок службы, отличная изоляция от холода и влаги.
Недостатки: высокая стоимость материала, слабая устойчивость к УФ-излучению.
Пенополистирол (или пенопласт)
Является очень востребованным и применяется в качестве изоляции для разных типов помещений.
Преимущества: невысокая теплопроводность, доступная стоимость, простота монтажа, непроницаемость для влаги.
Недостатки: хрупкий, легко воспламеняется, способствует образованию конденсата.
Экструдированный пенополистирол
Прочный и простой в работе материал, его легко раскроить на фрагменты необходимого размера и формы обычным острым ножом.
Преимущества: очень низкий коэффициент теплопроводности, плохая водопроницаемость, высокая прочность на сжатие, легкий монтаж, не боится плесени и гниения, может эксплуатироваться при температурах от -50⸰С до +75⸰С.
Недостатки: значительно дороже, чем пенопласт, восприимчив к растворителям на органической основе, способствует возникновению конденсата.
Базальтовая (или каменная) вата
Разновидность минеральной ваты, которая изготавливается на основе природного базальта.
Преимущества: противостоит возникновению грибков, звукоизолирует, имеет высокую прочность к механическим повреждениям, огнеупорна, негорюча.
Недостатки: в сравнении с аналогами имеет повышенную стоимость.
Эковата
Утепляющий материал, производимый из природных материалов , таких как древесные волокна и минералы.
Преимущества: изоляция посторонних звуков, экологическая чистота, стойкость к влаге, демократичная стоимость.
Недостатки: при эксплуатации возрастает ее теплопроводность, нужно использовать профессиональное оборудования для монтажа, может дать усадку.
Изолон
Один из высокотехнологичных утеплителей, который производят из пенополиэтилена. Очень востребован.
Преимущества: пониженная теплопроводность и паропроницаемость, высокие показатели шумоизоляции, удобно резать и мотнировать, экологичен, гибкий и маловесный.
Недостатки: невысокая прочность, нужно предусмотреть обязательный вентиляционный зазор.